An idea I can get behind – regulate [as in capture waste gas and recycle] methane first

Some readers took exception to my title, and I can see why now. I regret my choice of wording for the title. “Regulate its escape into the atmosphere” is where I was going. “Regulate” from my perspective in engineering things and making things work is different than what others might think. I wasn’t implying legislation. Recycling and recovery systems is what was in my mind.  Gas regulator valves and all that. This passage from the story below was my focus: “Since we already know how to capture methane from animals, landfills, and sewage treatment plants at fairly low cost, targeting methane makes sense,”.

I’ve amended the title [in brackets] -Anthony

According to the 2007 IPCC AR4 Methane has a “global warming potential” of 25 times that of CO2 over 100 years. Here’s a CH4 budget pie chart. Note that there are several sources where we can manage methane without affecting energy creation. Starting on Methane, rather than CO2, is an idea that I could get behind because it can be recycled and used for many things.

https://i1.wp.com/oceanlink.island.net/ONews/ONews7/images/methane%20sources%20-%20EPA.gif

A new paper from Drew Shindell from NASA JPL prompted Roger Pielke Jr. to write:

For years my father has been arguing that:

. . . attempts to “control” the climate system, and to prevent a “dangerous intervention” into the climate system by humans that focuses just on CO2 and a few other greenhouse gases will necessarily be significantly incomplete, unless all of the other first order climate forcings are considered.

His views are now being robustly vindicated as a quiet revolution is occurring in climate science. Here is how PhysOrg reports on a study out today in Science by NASA’s Drew Shindell and others:

According to Shindell, the new findings underscore the importance of devising multi-pronged strategies to address climate change rather than focusing exclusively on carbon dioxide. “Our calculations suggest that all the non-carbon dioxide greenhouse gases together have a net impact that rivals the warming caused by carbon dioxide.”

In particular, the study reinforces the idea that proposals to reduce methane may be an easier place for policy makers to start climate change agreements. “Since we already know how to capture methane from animals, landfills, and sewage treatment plants at fairly low cost, targeting methane makes sense,” said Michael MacCracken, chief scientist for the Climate Institute in Washington, D.C.

This research also provides regulators insight into how certain pollution mitigation strategies might simultaneously affect climate and air quality. Reductions of carbon monoxide, for example, would have positive effects for both climate and the public’s health, while reducing nitrogen oxide could have a positive impact on health but a negative impact on the climate.

“The bottom line is that the chemistry of the atmosphere can get hideously complicated,” said Schmidt. “Sorting out what affects climate and what affects air quality isn’t simple, but we’re making progress.”

Of note, Shindell et al. cautiously suggest that the entire framework of international climate policy may be based on an overly-simplistic view of the human effect on climate, by focusing on carbon dioxide equivalencies in radiative forcing (i.e.,g “global warming potential” or GWP), from their Science paper out today (emphasis added):